98 T. Titani.

THE VISCOSITY OF VAPOURS OF ORGANIC COMPOUNDS. PART II.

By Toshizo TITANI.

Received January 14, 1930. Published March 28, 1930.

Experiments on the transpiration method have been continued for various organic gases, using the capillary viscosimeter recently devised by the writer. (1) As described in the preceding paper air has been taken as standard substance, its viscosity being assumed to be equal to Millikan's value 1823×10^{-7} at 23° C.; and the values for other substances have been determined by relative measurement. Present work includes the measurements for seventeen gases at temperatures ranging between 20° and 120° C. and the computation of Sutherland's constants and molecular diameters for each of them. The gases used and their preparations are as follows:

Ethane: obtained by the electrolysis of potassium acetate, thoroughly washed with potassium hydroxide solution, condensed and then repeatedly fractionated.

Propane and isobutane: obtained by the action of Zn-Cu couple on dilute alcoholic solution of isopropyl- or isobutyl-iodide, condensed and fractionated.

Normal butane: prepared by the action of sodium amalgam on ethyliodide and purified by fractional distillation.

Ethylene and propylene: obtained by dehydrating ethyl- or isopropyl-alcohol with hot concentrated phosphoric acid.

 α - and β -butylene: obtained by the action of alcoholic potash on n-butyl- or secondary butyl-iodide and puried by fractional distillation.

 γ -butylene: obtained by dehydrating tertiary butyl alcohol with hot anhydrous oxalic acid and purified by fractional distillation.

Isoamylene (isopropyl-ethylene): obtained by the action of alcoholic potash on isoamyl-iodide prepared from Kahlbaum's isoamyl alcohol, shaken with two volumes dilute sulphuric acid at 0°C. for two hours⁽²⁾ and then fractionated.

⁽¹⁾ This Bulletin, 4 (1929), 277.

⁽²⁾ Wischnegradsky, Ann., 190 (1878), 353.

Acetylene: prepared from calcium carbide and water and purified after Vanino.(1)

Allylene: obtained by the action of alcoholic potash on propylenebromide, precipitated as copper compound, regenerated by warm dilute hydrochloric acid and fractionated.

Trimethylene: prepared by the reduction of trimethylene-bromide with zinc dust and alcohol, washed with potassium permanganate solution and fractionated.

Methyl-ether: obtained by dehydrating methyl alcohol with hot concentrated phosphoric acid, alcohol vapour mixed having been absorbed withphosphorus pentoxide.

Methyl-chloride: obtained by the action of dry hydrogen chloride gas on the boiling mixture of methyl alcohol and zinc chloride, washed with dilute potassium hydroxide solution and fractionated.

Methyl-bromide: obtained by heating the mixture of methyl alcohol, potassium bromide and dilute sulphuric acid, washed with water and fractionated.

Sulphur-dioxide: taken from a steel bomb and dried with sulphuric acid. The gases hardly soluble in water were all thoroughly washed with water and dried with calcium chloride before distillation.

The results of measurements are shown in the following tables. Sutherland's formula has been found to be applicable with satisfactory results for all gases. The viscosity values calculated by this formula are given in the third column. For the sake of comparison other observers' values are also cited, of which the figures with asterisk have been estimated graphically from original observed values.

 $\eta = 107.15 \frac{T^{3/2}}{T + 287.3} \cdot 10^{-7}$

40.C	η.107		Other observers' values	
<i>t</i> 0.	t°C. Obs. Ca		Calc.	Other observers values
0 20 40 60 80 100 120	929 986 1050 1111 1167 1230	863 926 989 1050 1110 1169 1227	855 (Vogel(2) 1914) 917*(Ishida(3) 1923) — — — — —	

Vanino, "Handbuch d. präparativen Chemie," II, 2. Aufl., (1923).
 Vogel, Ann. Phys., 43 (1914), 1235.
 Ishida, Phys. Rev., 21 (1923), 550.

Propane.

$$\eta = 102.3 \frac{T^{3/2}}{T + 341.3} \cdot 10^{-7}$$

t°C.	η·10 ⁷		04)
	Obs.	Calc.	Other observers' value
0 20 40 60 80 100 120	806 873 922 978 1029 1082	751 809 866 922 - 977 1032 1085	752 (Klemenc & Remi, (1) 1923)

Normal butane.

$$\eta = 98.27 \frac{T^{3/2}}{T + 377.4} \cdot 10^{-7}$$

t°C.	η·10 ⁷		Other observers' values
	Obs.	Calc.	Other observers' values
0 20 40 60 80 100 120	739 787 839 885 947 998	682 735 789 841 893 944 994	852*(Kuenen and Visser, (2) 1913)

Isobutane.

$$\eta\!=\!92.85 \frac{T^{^{3/2}}}{T\!+\!335.5}\cdot 10^{-7}$$

490	η-107		Oth and a harmonia mala
t°C.	Obs.	Calc.	Others observer's value
0 20 40 60 80 100 120	744 792 845 888 947 995	689 741 793 844 895 944 993	747*(Ishida(3) 1923) ————————————————————————————————————

⁽¹⁾ Klemenc and Remi, Monatsh. Chem., 44 (1923), 307.

⁽²⁾ Kuenen and Visser, Verhandel. Akad. Wetenschappen Amsterdam, 22 (1913), 336; Comm. Phys. Lab. Univ. Leiden, No. 138 a.

⁽³⁾ Ishida, loc. cit.

Ethylene.

$$\eta = 107.0 \frac{T^{3/2}}{T + 259.1} \cdot 10^{-7}$$

400	η·10 ⁷		Other observers' values
t°C.	Obs.	Calc.	Other observers values
0 20	_	907 972	966 (Graham, (1) 1846) 922 (v. Obermayer, (2) 1875) 961 (Breitenbach, (3) 1901) 907 (Zimmer, (4) 1911) (1090 (Graham) 987*(v. Obermayer) 1032*(Breitenbach) 974*(Zimmer)
22	970	979	- (2)
40	1036	1036	_
60	$1109 \atop 1106 $ 1108	1098	1116*(v. Obermayer)
80	1155 1154	1160	_
100	$1223 \atop 1217 1220$	1220	1280*(Breitenbach)
120	1278 1280 1280 1279	1279	-

Propylene.
$$\eta \! = \! 103.2 \! - \! \frac{T^{^{3/2}}}{T \! + \! 321 \! \cdot \! 6} \cdot 10^{-7}$$

	η.107		
t°C.	Obs.	Calc.	
0	_	783	
20	835	842	
21.5	856	847	
40	893	901	
60	959	958	
80	1023	1015	
100	1071	1070	
120	1122	1125	

⁽¹⁾ Graham, Phil. Trans., 3 (1846), 573.

v. Obermayer, Wien. Ber., 71 [2a], (1875), 281.
 Breitenbach, Ann. Phys., 5 (1901), 166.
 Zimmer, Diss. Halle, (1911); Verhandl. deut. physik. Ges., 14 (1912), 471.

 α -butylene.

$$\eta = 94.48 \frac{T^{3/2}}{T + 328.9} \cdot 10^{-7}$$

400	η·10 ⁷		
t°C.	Obs.	Calc.	
0 20 40 60 80 100 120	761 819 863 922 971 1020	708 762 815 868 919 970 1020	

$$\beta-$$
butylene. $\eta=97.63 \frac{T^{3/2}}{T+362.1} \cdot 10^{-7}$

t°C.	η·10 ⁷	
	Obs.	Calc.
0 25 40 60 80 100 120	761 796 858 905 961 1005	694 761 801 854 906 957 1008

γ —butylene.

$$\eta = 99.21 \frac{T^{3/2}}{T + 339.0} \cdot 10^{-1}$$

t°C.	η•:	107
	Obs.	Calc.
0 30 40 60 80 100 120	815 843 897 949 1006 1056	732 815 843 897 951 1004 1056

Isoamylene (Isopropyl-ethylene).

$$\eta = 94.48 \frac{T^{3/2}}{T + 368.0} \cdot 10^{-7}$$

t° C.	η-107		
	Obs.	Calc.	
0 222 40 50 60 80 100 120	714 771 773 829 871 915 967	665 722 769 794 819 869 919 968	

Acetylene.
$$\eta = 99.59 \frac{T^{3/2}}{T + 198.2} \cdot 10^{-7}$$

t° C.	η•107		Other observer's value
<i>t</i> 0.	Obs.	Calc.	Other observer's value
0 20 40 50 60 80 100 120	1020 1079 1113 1131 1198 1254 1318	954 1017 1079 1110 1140 1199 1256 1313	943 (Vogel,(1) 1914).

Allylene.
$$\eta = 98.35 \frac{T^{3/2}}{T + 276.5} \cdot 10^{-7}$$

40.0	η-107	
t° C.	Obs.	Calc.
0	_	808
10		837
20	867	866
30	895	895
40	925	924
50	952	953
60	977	981
70	1009	1009
80	1039	1036
90	1066	1064
100	1090	1091

⁽¹⁾ Vogel, loc. cit.

Trimethylene.
$$\eta \! = \! 115.3 \frac{T^{^{3/2}}}{T \! + \! 372.0} \cdot 10^{-7}$$

400	η.:	10^{7}
t°C.	Obs.	Cale.
0		807
20	876	870
40	923	933
50	960	964
60	999	933 964 994
80	1057	1055
100	1113	1115
120	1179	1175

Methyl-ether.
$$\eta = 116.4 - \frac{T^{3/2}}{T + 344.9} \cdot 10^{-7}$$

t°C. η-10°		107	Other observers' values	
<i>t</i> · 0.	Obs.	Calc.	Other observers values	
0		850	905 (Graham, (1) 1846)	
19.5	909	914		
20		915	1020 (,,)	
40	984	980		
60	1044	1043	_	
80	1109	1106	-	
100	1167	1168	1190 (Pedersen, (2) 1907)	
120	1228	1229	_	

Methyl-chloride.
$$\eta = 142.3 - \frac{T^{3/2}}{T + 380.1} \cdot 10^{-7}$$

t°C.	η-:	107	Other observers' values(3)
<i>t</i> -0.	Obs.	. Calc.	Other observers values
0	_	983	(1025 (Graham, 1846) 989 (Breitenbach, 1901) 978 (Vogel, 1914)
10	_	1022	
20	1061	1061	(1160 (Graham) (1072*(Breitenbach)
30	1101	1099	· · · · — ·
40	1140	1137	_
50	1175	1175	_
60	1209	1213	_
70	1250	1251	_
80	1287	1288	-
90	1323	1325	, –
100	1357	1362	1388*(Breitenbach)
110	1400	1398	-
120	1440	1434	_
130	1471	1470	

Methyl-bromide.

$$\eta = 177.5 \frac{T^{3/2}}{T + 379.2} \cdot 10^{-7}$$

10.0	η.10	7
t° C.	Obs.	Calc.
0.	_	1228
10	1277	1277
20	1327	1325
21	1333	1330
30	1378	1373
40	$\frac{1420}{1412}$ } 1416	1421
50	1457	1468
60	$1512 \atop 1522$ 1517	1515
120	1797	1791

Sulphur-dioxide.
$$\eta\!=\!173.6\frac{T^{^{3/2}}}{T\!+\!395.8}\cdot 10^{-7}$$

η·107		044	
Obs.	Calc.	Other observers' values.	
~	1171	(1225 Graham, (1) 1846) 1183 (Vogel, (2) 1914) 1168 (Smith, (3) 1922)	
1266	1265	(1380 (Graham) 1263* (Smith) 1250* (Trautz and Weizel, (4) 1925)	
1352	1357	1345*(,,)	
1455	1448	_	
1540	1538	1533* (Trautz and Weizel)	
1622	1627	(1630 (Smith) 1625* (Trautz and Weizel)	
1716	1715	1720*(,,)	
	Obs. 1266 1352 1455 1540 1622	Obs. Calc. - 1171 1266 1265 1352 1357 1455 1448 1540 1538 1622 1627	

Graham, loc. cit.
 Vogel, loc. cit.
 Smith, Phil. Mag., [vi], 44 (1922), 508.
 Trautz and Weizel, Ann. Phys., [4], 78 (1925), 305.

T. Titani.

Sutherland's constants C for various gases are said to be proportional to the critical point T_K or the boiling point T_S expressed in absolute scale, being equal to $\frac{T_K}{1.12}$ according to Rankine⁽¹⁾ or to $1.47T_S$ according to Vogel.⁽²⁾ The above results show that the relations do not hold strictly and the discrepancy from the rules is often remarkable, as is seen from the next table.

Suth	arlar	17,0	Cone	tants.
3111.111	нин	101.8	COUR	LATIES.

Substance	C obs.	T_K 1.12	$1.47~T_S$	Other observers' values(3)
Ethane	287	275	272	-
Propane	341	330	335	323.7 (Klemenc and Remi)
Normal butane	377	380	400	349 (Kuenen and Visser)
Isobutane	336	363	387	
Ethylene	259	253	249	272 (Sutherland) 226 (Breitenbach) 272 (O. E. Meyer and Zimmer)
Propylene	322	326	332	(0.21 220) 02 424 224
α-butylene	329	372	393	
β-butylene	362	382	403	
γ-butylene	339	372	391	
Isoamylene	368		432	
Acetylene	198	276	278	
Allylene	277	360	366	
Trimethylene	372	_	350	
Methyl-ether	345	360	368	
Methyl-chloride	380	371	366	454 (Breitenbach)
Methyl-bromide	379	417	409	
Sulphur-dioxide	396	384	386	416 (Smith)
Air	113	118	119	Cf. the Part I of this paper

Mean free pathes (*l*) and collision diameters (σ) of molecules were calculated by the kinetic theory of gases using the following equations, where \bar{u} expresses mean velocity, M molecular weight and n the number of molecules in one cubic centimeter, all referred to 0° C. and one atmospheric pressure.

⁽¹⁾ Rankine, Proc. Roy. Soc. London, [A], 84 (1910), 181.

⁽²⁾ Vogel, loc. cit.

⁽³⁾ Landolt-Börnstein-Roth, "Physikalisch-chemische Tabellen," I, 5. Aufl., (1923).

$$\bar{u}^{2} = \frac{8}{\pi} \frac{p}{d} = \frac{8}{\pi} \times 1013250 \times \frac{22412}{M}$$

$$l = \frac{32\eta}{5\pi d\bar{u}} = \frac{\eta \times 22412}{0.49 \times M \times \bar{u}}$$

$$\sigma^{2} = \frac{1}{\sqrt{2} n \pi l \left(1 + \frac{C}{T}\right)} \cdot (n = 2.7 \times 10^{19})$$

The next table contains the results of calculation:

Substance	M	\bar{u}	η·10 ⁷	l-108	C	σ⋅10 ⁸
Ethane	30.05	43 870	863	299	287	3.68
Propane	44.06	36 230	751	215	341	4.15
Normal butane	58.08	31 550	682	170	377	4.53
Isobutane	58.08	31:550	689	172	336	4.66
Ethylene	28.03	45 420	907	326	259	3.62
Propylene	42.05	37 090	783	230	322	4.08
α-butylene	56.06	32 120	708	180	329	4.58
β-butylene	56.06	32 120	694	176	362	4.51
γ-butylene	56.06	32 120	732	186	339	4.47
Isoamylene	70.08	28 730	665	151	368	4.84
Acetylene	26.02	47 150	954	356	198	3.68
Allylene	40.03	38 010	808	243	277	4.13
Trimethylene	42.05	37 090	807	237	372	3.86
Methyl-ether	46.05	35 440	850	238	345	3.93
Methyl-chloride	50.48	33 850	983	263	380	3.64
Methyl-bromide	94.94	24.680	1 228	240	379	3.81
Sulphur-dioxide	64.06	30 040	1.171	278	396	3.49
Air	28.99	44 660	1 711	604	113	3.12

The molecular diameters (σ_{η}) thus calculated from viscosity agree generally with those (σ_b) from van der Waals' b, deduced from critical data⁽¹⁾ as is seen in the following table.

Valentiner, Landolt-Börnstein-Roth, "Physikalisch-chemische Tabellen," I, 5. Aufl., (1923), 253; Pickerring, J. Phys. Chem., 28 (1924), 97.

T. Titani.

1			•	
Mo	POIL	ar	diam	eters.

Substance	$\sigma_{\eta} \cdot 10^8$	c₀ · 188	$\sqrt[3]{V_S}$
Ethane	3.68	3.70	3.84
Propane	4.15	4.05	4.21
Normal butane	4.53	4.59	4.58
Isobutane	4.66	4.48	4.57
Ethylene	3.62	3.56	3.54
Propylene	4.08	4.02	4.05
α-butylene	4.58	_	4.46
β-butylene	4.51	_	4.46
γ-butylene	4.47	_	4.45
Isoamylene	4.84	4.80	4.79
Acetylene	3.68	3.44	3.33
Allylene	4.13	_	3.90
Trimethylene	3.86	_	3.92
Methyl-ether	3.93	3.85	3.97
Methyl-chloride	3.64	3.71	3.69
Methyl-bromide	3.81	-	3.82
Sulphur-dioxide	3.49	3.55	3.53
Air	3.12	3.06	3.11

The figures in the last column express the cube root of the molecular volumes at boiling points. These values shall be proportional to the actual diameters of molecules according to the theory of corresponding state and it seems to be actually the case. Indeed, if 10^{-8} be affixed to the figures in the last column, they express the actual dimensions of molecules. This result shows the molecular volumes at boiling points being about three times as large as the actual volume of molecules:

$$6.06 imes 10^{23} \cdot \frac{\pi}{6} \, \sigma^3 \ensuremath{\rightleftharpoons} 0.318 \, V_s$$
 .

In conclusion the writer wishes to express his cordial thanks to Prof. M. Katayama for this kind guidance and encouragement throughout this experiment.

The Institute of Physical and Chemical Research. Hongo, Tokyo.